16,364 research outputs found

    Bosonization of the two-dimensional electron gas in the lowest Landau level

    Get PDF
    We develop a bosonization scheme for the collective dynamics of a spinless two-dimensional electron gas (2DEG) in the lowest Landau level. The system is treated as a continuous elastic medium, and quantum commutation relations are imposed between orthogonal components of the elastic displacement field. This theory provides a unified description of bulk and edge excitations of compressible and incompressible phases, and explains the results of recent tunneling experiments at the edge of the 2DEG.Comment: 4 pages, includes 1 figur

    Wolf-Rayet phenomena

    Get PDF
    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included

    Exchange-correlation potential for Current Density Functional Theory of frequency dependent linear response

    Full text link
    The dynamical, long-wavelength longitudinal and transverse exchange-correlation potentials for a homogeneous electron gas are evaluated in a microscopic model based on an approximate decoupling of the equation of motion for the current-current response function. The transverse spectrum turns out to be very similar to the longitudinal one. We obtain evidence for a strong spectral structure near twice the plasma frequency due to a two-plasmon threshold for two-pair excitations, which may be observable in inelastic scattering experiments. Our results give the entire input needed to implement the Time-Dependent Current Density Functional Theory scheme recently developed by G. Vignale and W. Kohn [Phys. Rev. Lett. 77, 2037 (1996)] and are fitted to analytic functions to facilitate such applications.Comment: 6 pages, 3 figure

    Tunneling into fractional quantum Hall liquids

    Full text link
    Motivated by the recent experiment by Grayson et.al., we investigate a non-ohmic current-voltage characteristics for the tunneling into fractional quantum Hall liquids. We give a possible explanation for the experiment in terms of the chiral Tomonaga-Luttinger liquid theory. We study the interaction between the charge and neutral modes, and found that the leading order correction to the exponent α\alpha (IVα)(I\sim V^\alpha) is of the order of ϵ\sqrt{\epsilon} (ϵ=vn/vc)(\epsilon=v_n/v_c), which reduces the exponent α\alpha. We suggest that it could explain the systematic discrepancy between the observed exponents and the exact α=1/ν\alpha =1/\nu dependence.Comment: Latex, 5 page

    A recursive-faulting model of distributed damage in confined brittle materials

    Get PDF
    We develop a model of distributed damage in brittle materials deforming in triaxial compression based on the explicit construction of special microstructures obtained by recursive faulting. The model aims to predict the effective or macroscopic behavior of the material from its elastic and fracture properties; and to predict the microstructures underlying the microscopic behavior. The model accounts for the elasticity of the matrix, fault nucleation and the cohesive and frictional behavior of the faults. We analyze the resulting quasistatic boundary value problem and determine the relaxation of the potential energy, which describes the macroscopic material behavior averaged over all possible fine-scale structures. Finally, we present numerical calculations of the dynamic multi-axial compression experiments on sintered aluminum nitride of Chen and Ravichandran [1994. Dynamic compressive behavior of ceramics under lateral confinement. J. Phys. IV 4, 177–182; 1996a. Static and dynamic compressive behavior of aluminum nitride under moderate confinement. J. Am. Soc. Ceramics 79(3), 579–584; 1996b. An experimental technique for imposing dynamic multiaxial compression with mechanical confinement. Exp. Mech. 36(2), 155–158; 2000. Failure mode transition in ceramics under dynamic multiaxial compression. Int. J. Fracture 101, 141–159]. The model correctly predicts the general trends regarding the observed damage patterns; and the brittle-to-ductile transition resulting under increasing confinement

    Continuum elasticity theory of edge excitations in a two-dimensional electron liquid with finite range interactions

    Get PDF
    We make use of continuum elasticity theory to investigate the collective modes that propagate along the edge of a two-dimensional electron liquid or crystal in a magnetic field. An exact solution of the equations of motion is obtained with the following simplifying assumptions: (i) The system is {\it macroscopically} homogeneous and isotropic in the half-plane delimited by the edge (ii) The electron-electron interaction is of finite range due to screening by external electrodes (iii) The system is nearly incompressible. At sufficiently small wave vector qq we find a universal dispersion curve ωq\omega \sim q independent of the shear modulus. At larger wave vectors the dispersion can change its form in a manner dependent on the comparison of various length scales. We obtain analytical formulas for the dispersion and damping of the modes in various physical regimes.Comment: 3 figure

    Solvable Lie algebras are not that hypo

    Full text link
    We study a type of left-invariant structure on Lie groups, or equivalently on Lie algebras. We introduce obstructions to the existence of a hypo structure, namely the 5-dimensional geometry of hypersurfaces in manifolds with holonomy SU(3). The choice of a splitting g^*=V_1 + V_2, and the vanishing of certain associated cohomology groups, determine a first obstruction. We also construct necessary conditions for the existence of a hypo structure with a fixed almost-contact form. For non-unimodular Lie algebras, we derive an obstruction to the existence of a hypo structure, with no choice involved. We apply these methods to classify solvable Lie algebras that admit a hypo structure.Comment: 21 pages; v2: presentation improved, typos corrected, notational conflicts eliminated. To appear in Transformation Group
    corecore